
Union & Find opertion

Introduction to Union and Find

Operations

Operations on partitions.

Union

Need to form union of two different sets of a partition

Find

 Need to find out which set an element belongs to

Every set in the partition has a number.

The numbers can be anything as long as different sets have

distinct numbers.

Find(a) returns the number of the set containing a.

Can two different sets contain the same element?

No, the sets in a partition are disjoint

Disjoint Set Data Structure

The set is represented by the root of the tree.

The number assigned to a set is the number of the

root element.

Every element has a number.

Elements of a set are stored in a tree (not necessarily binary)

Pseudo Code for Find

Find(a) {

 If S[a] = 0, return a;

 else Find(S[a]);

 return;

 }

Complexity? O(N)

Pseudo-Code for Union

Union(root 1, root 2)

 {

 S[root2] = root1;

 }

Complexity? O(1)

Pseudo Code for Find

Find(a) {

 If S[a] < 0, return a;

 else Find(S[a]);

 return;

 }

Complexity Analysis for Find

Operation

If the depth (distance from root) of a node A increases,

then the earlier tree consisting the node A becomes a

subtree of another.

Since only a smaller tree becomes a subtree of another,

total size of the combined tree must be at least twice

the previous one consisting A.

Each time depth of a node increases, the size of the

tree increases by at least a factor of 2.

At first every node has depth 0

Next time depth is 1, tree size is at least 2,

 depth is 2, tree size is at least 4…

 depth is k, tree size is at least 2k

We know that 2k <= N

Thus k <= log N

Complexity of Find operation is O(log N)

Complexity of any M operations is O(MlogN)

Depth of any tree is at most log N

Pseudo Code for New Find

Find(a) {

 If S[a] < 0, return a;

 else S[a]=Find(S[a]);

 return;

 }

Complexity Analysis

Any M operations take O(Mlog*N) if M is (N)

log*N is the number of times we take loglog….logN so as to

get a number less than or equal to 1 (log base 2, even

otherwise asymptotic order remains the same).

log*N grows very slowly with N and is less

than 4 or 5 for all practical values of N,

 log*232 is less than 5

Thus the worst case complexity is linear for all practical

purposes.

 Assignment

Q.1)Write Find_set opertion & Disjoint set operation

of disjoint set.

Q.2)Explain data representation & array

representation of set S1,S2,S3 where

S1={1,7,8,9},S2={2,5,10},S3={3,4,6}.

Q.3)Draw possible representation of S1, S2 where

S1={1,7,8,9},S2={2,5,10},

